On 3-choosable planar graphs of girth at least 4
نویسنده
چکیده
Let G be a plane graph of girth at least 4. Two cycles of G are intersecting if they have at least one vertex in common. In this paper, we show that if a plane graph G has neither intersecting 4-cycles nor a 5-cycle intersecting with any 4-cycle, then G is 3-choosable, which extends one of Thomassen’s results [C. Thomassen, 3-list-coloring planar graphs of girth 5, J. Combin. Theory Ser. B 64 (1995) 101–107]. © 2008 Elsevier B.V. All rights reserved.
منابع مشابه
3-choosability of Triangle-free Planar Graphs with Constraint on 4-cycles
A graph is k-choosable if it can be colored whenever every vertex has a list of at least k available colors. A theorem by Grötzsch [2] asserts that every triangle-free planar graph is 3-colorable. On the other hand Voigt [10] gave such a graph which is not 3-choosable. We prove that every triangle-free planar graph such that 4-cycles do not share edges with other 4and 5-cycles is 3-choosable. T...
متن کامل3-Choosability of Triangle-Free Planar Graphs with Constraints on 4-Cycles
A graph is k-choosable if it can be colored whenever every vertex has a list of at least k available colors. A theorem by Grötzsch [2] asserts that every triangle-free planar graph is 3-colorable. On the other hand Voigt [10] found such a graph which is not 3-choosable. We prove that if a triangle-free planar graph is not 3-choosable, then it contains a 4-cycle that intersects another 4or 5-cyc...
متن کاملPlanar Graphs of Girth at least Five are Square (∆ + 2)-Choosable
We prove a conjecture of Dvořák, Král, Nejedlý, and Škrekovski that planar graphs of girth at least five are square (∆ + 2)-colorable for large enough ∆. In fact, we prove the stronger statement that such graphs are square (∆+2)-choosable and even square (∆+2)-paintable.
متن کاملChoosability in signed planar graphs
This paper studies the choosability of signed planar graphs. We prove that every signed planar graph is 5-choosable and that there is a signed planar graph which is not 4-choosable while the unsigned graph is 4-choosable. For each k ∈ {3, 4, 5, 6}, every signed planar graph without circuits of length k is 4-choosable. Furthermore, every signed planar graph without circuits of length 3 and of le...
متن کاملInjective choosability of subcubic planar graphs with girth 6
An injective coloring of a graph G is an assignment of colors to the vertices of G so that any two vertices with a common neighbor have distinct colors. A graph G is injectively k-choosable if for any list assignment L, where |L(v)| ≥ k for all v ∈ V (G), G has an injective L-coloring. Injective colorings have applications in the theory of error-correcting codes and are closely related to other...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 309 شماره
صفحات -
تاریخ انتشار 2009